

UAE National Surveillance System for Antimicrobial Resistance

24 October 2019 INFORMA Infection Control Conference, Dubai, UAE

Dr. Jens Thomsen MD, MPH

Section Head, Environmental Health Chair, UAE Sub-Committee for Antimicrobial Resistance Abu Dhabi Public Health Center/DoH, Abu Dhabi, UAE jthomsen@doh.gov.ae To describe:

- 1. UAE National Surveillance System for AMR
 - Concepts and methods
 - Surveillance sites
 - Data collection and analysis

2. Epidemiology of AMR in the UAE

- Cumulative antibiogram
- Patterns and Trends of AMR
- Reporting of AMR data

3. How can AMR surveillance data support Infection Control?

- Line listings
- Epi curves
- Isolate alerts
- Resistance profiles
- Detection of clusters and potential HAI outbreaks

1. UAE National Surveillance System for AMR

- What are the threats?
- WHO Global Action Plan and WHO-GLASS
- AMR Surveillance concepts and methods
- AMR Committees and Sub-Committees in the UAE
- AMR Surveillance Sites By Emirate/Region
- Data collection and analysis

What are the Threats?

PRIORITIZATION OF PATHOGENS TO GUIDE DISCOVERY, RESEARCH AND DEVELOPMENT OF NEW ANTIBIOTICS FOR DRUG-RESISTANT BACTERIAL INFECTIONS, INCLUDING TUBERCULOSIS

Priority 1: CRITICAL*

Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant

*Enterobacteriaceae**, carbapenem-resistant, 3rd generation cephalosporin-resistant

Priority 2: HIGH*

Enterococcus faecium, vancomycin-resistant

Staphylococcus aureus, methicillin-resistant, vancomycin intermediate and resistant

Helicobacter pylori, clarithromycin-resistant

Campylobacter, fluoroquinolone-resistant

Salmonella spp., fluoroquinolone-resistant

Neisseria gonorrhoeae, 3rd generation cephalosporin-resistant, fluoroquinolone-resistant

Priority 3: MEDIUM*

Streptococcus pneumoniae, penicillin-non-susceptible

Haemophilus influenzae, ampicillin-resistant

Shigella spp., fluoroquinolone-resistant

4 World Health Organization, 2017 [1]. Tacconelli E et al. [2]

Meet The Superbugs

Gram-positive Superbugs

Gram-negative Superbugs

MRSA / VISA / VRSA

VRE

Enterobacteriaceae, Acinetobacter, Pseudomonas (CPO: resistant to Carbapenems)

Active Drugs

Vancomycin, Linezolid, Dalbavancin, Daptomycin, etc. **Active Drugs**

Few to none

5 Adapted from Kenneth Thomson, Louisville, KY, USA, 2018 [3]

Focus on National AMR Surveillance and Microbiology Lab Capacity

6 WHO Global Action Plan on AMR, 2015 [4]

Core Components for National AMR Surveillance Systems

What is Surveillance? WHO definition:

- allow priorities to be set and to
- inform public health policy and strategies.

Ultimately, to inform treatment guidelines and guide patient management

But also to

- Understand the problem
- Guide interventions
- Assess the burden, and epidemiology of AMR

Relationship between Individual Care and AMR Surveillance

Adapted from WHO GLASS Diagnostic Stewardship Guideline 2016 [7]

Relationship between Individual Care and AMR Surveillance

UAE National AMR Surveillance System: History

- 2014: MOHAP Decision to establish UAE Higher Committee for Antimicrobial Resistance (AMR)
- **2015:** UAE Higher Committee for AMR decided to implement the WHO GAP-AMR, including:

Dubai

Abu Dhabi

- Develop UAE National Action Plan for AMR (NAP-AMR)
- Establish UAE National Surveillance System for AMR

How to develop an UAE National Surveillance System for Antimicrobial Resistance?

• Functions:

- Serve as interim National Coordination Center for AMR Surveillance (NCC)
- Report to UAE Higher Committee for AMR
- Oversee National AMR Surveillance Strategies and Activities
- Provide input into National AMR Strategy and Action Plan, national AMR policies and guidelines, and laws and regulations
- Conduct capacity building and technical training activities for AMR Surveillance, including WHONET training
- Collect & analyze AMR data from national surveillance sites/labs
- Develop and publish AMR Surveillance reports
- Report UAE national AMR data annually to WHO-GLASS
- Cooperate with local, national, and international stakeholders, and across sectors

National Sub-Committee for AMR Surveillance – Members

Ministry of Health and Prevention (MOHAP)/Purehealth

- 1. Dr. Manal al Fattah
- 2. Dr. Najiba Abdulrazzaq (NFP)
- 3. Prof. Hala Fouad (Co-Chair)

Department of Health Abu Dhabi (DoH)

- 4. Dr. Jens Thomsen (Chair)
- 5. Dr. Bashir Aden
- 6. Yousuf Naqvi

Dubai Health Authority (DHA)

- 7. Dr. Anju Nabi
- 8. Dr. Maya Habous

Ministry of Presidential Affairs (MOPA)

- 9. Dr. Mubarak Alfaresi
- 10. Dr. Duckjin Hong
- 11. Dr. Fouzia Jabeen

Universities:

- 12. Prof. Tibor Pal
- 13. Prof. Agnes Sonnevend
- 14. Prof. Palat Menon
- 15. Dr. Godfred Menezes

Hospitals:

- 16. Dr. Stefan Weber
- 17. Dr. Adnan Alatoom
- 18. Dr. Somansu Basu

NA Consultant Internist, Al Baraha Hospital, Dubai

MF Specialist Microbiology, Sagr hospital/purehealth, RAK

- HF Consultant Microbiology, Al Baraha hospital/purehealth, Dubai
- JT Section Head, Environmental Health
- BA Advisor, Quality Monitoring
- YN Regulation Officer, Drug and Medical Product Regulation

AN Head Microbiology & Infection Control Unit, Rashid Hospital, Dubai MH Specialist Registrar (MD), Rashid Hospital

- MA Consultant Medical Microbiologist & ID Epidemiologist, SKGH, UAQ
- DH Consultant Clinical Pathologist, Laboratory Medicine, SKSH, RAK
- FJ Consultant Microbiologist, SKMC, Ajman

TP Professor of Microbiology, Consultant Clinical Microbiologist, UAEU AS Associate Professor, Consultant Clinical Microbiologist, UAEU

- AS Associate Professor, consultant cinical Microbiologist, OAco
- PM Medical Director and Chief Operating Officer, Thumbay Labs, UAE
- GM Associate Professor, RAKMHSU, Ras Al Khaimah

SW Public Sector: Consultant Microbiology, SKMC, Abu Dhabi

- AA Semi-Governmental: Consultant Microbiology, CCAD, Abu Dhabi
- SB Private Sector: Medical Microbiologist, NMC Specialty Hospital Al Ain

Core Components for National AMR Surveillance Systems

National AMR Surveillance System – Structure

UAE National AMR Surveillance System, 2019 [8]

17

National AMR Surveillance Sites – By Emirate/Region

All seven Emirates are represented

National AMR Surveillance System – Data collection

19 UAE National AMR Surveillance System, 2019 [8]

National AMR Surveillance System – Data Analysis

Inclusion criteria:

Diagnostic isolates (non-duplicate/first isolate per patient)

Exclusion criteria:

- Copy strains/multiple isolates
- Screening isolates (e.g. MRSA)
- Isolates from nose/axilla/groin
- Internal QC isolates (ATCC)
- External QC isolates (EQAS)
- Small sample size (N<10 isolates) ٠
- Antibiotics not routinely tested

100%

- Quality control isolates
- Screening isolates
- **Multiple isolates**
- Environmental isolates

UAE National AMR Surveillance System – Data Analysis and Reports

UAE National AMR Surveillance System, 2019 [8]

WHONET 2019:

- Specialized software for AMR surveillance
- Developed by the WHO Collaborating Center for AMR Surveillance, Boston, USA
- Widely used:
 > 2,300 laboratories in
 > 120 countries
- Target audience:
 - Lab, Pharmacy, IPC, ID, Quality, PH/Epi
- Endorsed by WHO
- Free of charge
- Download: <u>www.whonet.org</u>
- Technical support & training: jthomsen@doh.gov.ae

WHONET

SUPPORTING GLOBAL SURVEILLANCE OF INFECTIOUS DISEASES

WHONET Home Page - www.whonet.org

Software Documentation About Calendar Contac

The microbiology laboratory database software.

•	
II & MCII	C11104041111
	-
	and a second
here towards	344

This is our NEW version of WHONET. It is a modernized version of WHONET 5.6. In addition to the standard WHONET 5.6 features, this version supports 26 languages and includes new features for

WHONET WEB

This version of WHONET is still in development. In addition to the standard features of the desktop softwares, For U.S. facilities, WHONET WEB also supports monthly reporting to the CDC's NHSN project MDRO-CDI reporting module.

WHONET 5.6

This is the version of WHONET used in over 120 countries and 2,300 laboratories around the world. WHONET 5.6 is a desktop application written in Visual Basic 6 with support for 24 languages and 2019 CLSL and ELICAST breakpoints

2. Epidemiology of AMR in the UAE

- 1. UAE National Surveillance System for AMR
- 2. Epidemiology of AMR in the UAE
 - AMR Priority Pathogens
 - UAE National Antibiogram 2018
 - Long-term AMR trends
 - Breakdowns (by Emirate/region, location type, ...)
 - Reporting of AMR Data and statistics
 - How can Healthcare facilities participate?
- 3. How can AMR surveillance data support Infection Control?

UAE AMR Surveillance: AMR Priority Pathogens, 2018

Priority 1: CRITICAL*

Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant

*Enterobacteriaceae**, carbapenem-resistant, 3rd generation cephalosporin-resistant

Priority 2: HIGH*

Enterococcus faecium, vancomycin-resistant

Staphylococcus aureus, methicillin-resistant, vancomycin intermediate and resistant

Helicobacter pylori, clarithromycin-resistant

Campylobacter, fluoroquinolone-resistant

Salmonella spp., fluoroquinolone-resistant

Neisseria gonorrhoeae, 3rd generation cephalosporin-resistant, fluoroquinolone-resistant

Priority 3: MEDIUM*

Streptococcus pneumoniae, penicillin-non-susceptible Haemophilus influenzae, ampicillin-resistant

Shigella spp., fluoroquinolone-resistant

¹Salmonella spp.: non-typhoidal, non-stool isolates

United Arab Emirates (2018)**

Priority 1: CRITICAL												
Organism	Antibiotic	N (patients)	% Res									
A. baumannii	IPM or MEM	1,567	32.8									
P. aeruginosa	IPM or MEM	6,427	16.2									
Enterobacteriaceae	IPM or MEM	42,935	4.4									
Enterobacteriaceae	ESBL	18,216	34.3									
	Priority: 2 HIGH											
Organism	Antibiotic	N (patients)	% Res									
Enterococcus faecium	Vancomycin	393	11.5									
S. aureus	MRSA	14,952	36.3									
Salmonella spp.1	Fluoroquinolones (CIP)	157	39.5									
Neisseria gonorrhoeae	3 rd gen. Ceph. (CRO)	129	0									
Neisseria gonorrhoeae	Fluoroquinolones (CIP)	154	81.2									
	Priority 3: MEDIUM											
Organism	Antibiotic	N (patients)	% Res									
S. pneumoniae (oral)	Penicillin G, non-susc. (I+R)	1,081	50.7									
S. pneumoniae (inv.)	Penicillin G, non-susc. (I+R)	1,081	5.6									
H. influenzae	Ampicillin	983	14.9									
Shigella spp.	Fluoroquinolones (CIP)	133	42.9									

25 *WHO, 2017 [1]/Tacconelli 2017 [2] **UAE National AMR Surveillance, 2018. %Res = percent of isolates fully resistant

UAE Cumulative Antibiogram, 2018: Gram-neg. Bacteria (%Susceptible)

3rd	High I -gen.	resi Cep	stai hal	nce osp	to orii	าร		<i>К. р</i> М	ne IEM	umo I-R:	onic 6%	ie		Cir	<i>E.</i> (pro-	<i>coli</i> R: 3	6%		t	High o Co	resi trim	stan oxaz	ce ole
		2			7			106	2						0							28	24
Gram-negative Bacteria	Isolates		Pen	icillins			β-Lac Cephalc	c tams osporins			Carba	penems		Ami	noglyco	sides	F	Q			Other		
	(N)	AMP	AMC	SAM	TZP	FOX	СХМ	стх	CAZ	FEP	IPM	MEM	ETP	AMK	GEN	тов		CIP	ATM	SXT	NIT	MNO	тсү
Gram-negative bacteria (all)	48,929	25	67	48	86	78	59	66	80	82	88	93	93	95	87	83		55	68	65	64	51	60
Haemophilus influenzae ¹	1,172	84	94	-	-	-	95	-	-	-	-	-	-	-	-	-		96	-	87	-	-	85
nterobacteriaceae	37,472	25	68	-	90	81	63	69	-	83	92	97	96	98	88	84	-	71	77	65	66	54	55
Citrobacter koseri (diversus)	842	R	93	-	97	91	73	94	-	97	98	98	98	100	99	98	_ \	83	96	97	82	-	95
Enterobacter cloacae	1,240	R	R	R	83	R	R	76	-	90	89	98	91	99	93	92	-	72	84	85	38	-	90
Enterobacter aerogenes	796	R	R	R	83	R	R	79	-	95	62	97	97	100	96	93	-	94	89	100	18	-	88
Escherichia coli	20,846	33	74	-	92	89	64	64	-	80	99	99	98	99	87	84	-	44	73	57	93	-	55
Klebsiella pneumoniae	8,514	R	75	-	83	86	68	70	-	82	93	94	93	94	88	82	-	59	74	72	28	-	74
Klebsiella oxytoca	324	R	84	-	88	95	77	85	-	90	94	95	96	96	90	83	-	65	90	83	79	-	76
Morganella morganii	486	R	R	-	96	47	R	64	-	92	45	98	99	99	78	78	-	40	83	62	R	-	R
Proteus mirabilis	1,425	61	88	-	99	94	91	88	-	92	14	98	95	97	77	85	-	50	92	56	R	-	R
Providencia spp.	186	R	R	-	97	90	66	91	– (97	48	96	91	99	81	73	-	59	-	86	R	-	R
Salmonella spp. (non-typhoid)	668	87	95	-	98	-	-	96	-	99	-	-	-	-	-	-	-	?	-	94	59	-	-
Salmonella Typhi/Paratyphi	92	72	81	-	91	-	-	89	-	83	-	-	-	-	-	-	-	?	-	76	67	-	-
Serratia marcescens	982	R	R	R	93	R	R	90	-	97	84	97	97	100	97	89	-	79	96	96	R	-	57
Shigella spp.	108	41	72	-	98	-	-	65	-	88	-	-	-	-	-	-	-	51	-	49	95	-	-
Ion-fermenting Gram-neg. rods	9,688	R	R	-	72	-	-	-	79	78	75	75	R	83	81	80	-	71	55	64	-	51	49
Acinetobacter baumannii	1,540	R	R	-	61	-	-	-	58	60	65	65	R	84	68	68	-	60	R	72	-	69	76
Pseudomonas aeruginosa	6,209	R	R	R	87	-	R	R	87	89	83	83	R	95	91	94	-	82	68	R	R	R	R
Stenotrophomonas maltophilia	803	R	R	R	R	-	-	R	65	17	R	R	3	R	R	R	-	2	R	87	-	95	R
influenzae: LVX: 96 %S, CRO: 91 9	%S, AZM: 99	%S, CLF	88 %S			5				08		2			.1780.		-	3	C ^a		≥ 80%	Suscer	otible

Enterobacteriaceae and P. aeruginosa

A. baumannii MEM-R: 35% ≥ 80% Susceptible 70 to 79% Susceptible ≤69% Susceptible No data/not indicated Intrinsic resistance (R)

_

R

UAE National AMR Surveillance System (2018) [8] n=48,929 isolates. Note: preliminary data (53 out of 58 hospitals)

E. coli: Trend of Percentage Resistant Isolates (%R) Abu Dhabi, 2010-2018

Trend for percentage of resistance (%R) for *E. coli*, Abu Dhabi Emirate, 2010 – 2018

Increasing resistance trends:

- 3rd-gen. cephalosporins (CAZ ↑, CTX ↑)
- 4th- gen. cephalosporins (FEP ↑)
- Carbapenems (IPM ↑, MEM ↑)
- Fluoroquinolones (CIP ↑)

Decreasing resistance trends:

• Trimethoprim-Sulfamethoxazole (SXT ↓↓)

27 UAE National AMR Surveillance System, 2018 [8]

K. pneumoniae: Trend of Percentage Resistant Isolates (%R) Abu Dhabi, 2010-2018

Trend for percentage of resistance (%R) for *K. pneumoniae*, Abu Dhabi Emirate, 2010 – 2018

Increasing resistance trends:

- 3rd-gen. cephalosporins (CAZ ↑, CTX ↑)
- 4th- gen. cephalosporins (FEP [↑])
- Carbapenems (IPM [↑], MEM [↑])
- Fluoroquinolones (CIP [↑])
- Trimethoprim-sulfamethoxazole ([↑])

Decreasing resistance trends:

None

28 UAE National AMR Surveillance System, 2018 [8]

Enterobacteriaceae: Trend of Resistance to Cephalosporins Abu Dhabi Emirate (SEHA), 2010-2018

9

2018

Percent of *Enterobacteriaceae* Isolates resistant to 2rd, 3rd, 4th generation Cephalosporins (%R), By Year, Abu Dhabi Emirate (SEHA), 2010-2018, N=91,866

Enterobacteriaceae: Percent of Isolates resistant to Carbapenems (%CRE) United Arab Emirates, 2018 - by Emirate

Enterobacteriaceae, Percent of Isolates resistant to Meropenem (CRE) United Arab Emirates, 2018 - <u>By Emirate</u>

Enterobacteriaceae (All)

Klebsiella pneumoniae

Emergence of Carbapenem-resistant Enterobacteriaceae (CRE) Abu Dhabi Emirate (SEHA), 2010-2018

CRE, by species

% CRE

- % Non-susceptible (IPM or MEM)
- % Resistant (IPM <u>or</u> MEM)
- *** % Resistant (IPM <u>and</u> MEM)

Enterobacteriaceae, *P. aeruginosa, A. baumannii*: Trend of Resistance to Carbapenems (Meropenem), Abu Dhabi Emirate (SEHA), 2010-2018

32 UAE National AMR Surveillance System, 2018 [8]

P. aeruginosa: Trend of percentage resistant Isolates (%R) Abu Dhabi Emirate (SEHA), 2010-2018

Trend for percentage of resistance (%R) for *P. aeruginosa*, Abu Dhabi Emirate, 2010 – 2018

Increasing resistance trends:

- 3rd-gen. cephalosporins (CAZ ↑)
- Carbapenems (IPM ↑ ↑, MEM ↑)
- Fluoroquinolones (CIP [↑])

Decreasing resistance trends:

• Piperacillin-Tazobactam (TZP ↓)

A. baumannii: Trend of percentage resistant Isolates (%R) Abu Dhabi Emirate (SEHA), 2010-2018

Trend for percentage of resistance (%R) for A. baumannii, Abu Dhabi Emirate, 2010 – 2018

DND-DND-D	50/1		0.0	2.51		1215	0.2	0.5	02		U.S.	0.5	0.7	CI-5	LU.	- 0	× 0	20	10	20
			MRS	A 36	%	E hi	Eryth ighly	ron res	nycir istar	ו nt		Stap High	oh. s resi	pp. a star	and nce t	Ente o flu	roco ioro	occu quin	s sp olor	p.: nes
0	Isolates			β-Lac	tams			Macr	olides	AG	F	Q (Glyco	pept.			Ot	her		
Gram-positive Bacteria	(N)	AMP	PEN	AMC	OXA	CRO	СТХ	ERY	CLI	GEN	LVX	MFX	VAN	TEC	SXT	NIT	LNZ	тсү	RIF	QDA
Gram-positive organisms (all)	29,191	86	39	-	55	-	-	52	80	86	74	61	99	98	66	97	99	64	98	72
Enterococcus spp.	3,764	90	-	-	-	R	R	8	R	R	67	60	98	98	R	90	97	-	-	-
Enterococcus faecalis	3,140	99	-	-	-	R	R	7	R	R	72	64	99	99	R	98	97	-	-	R
Enterococcus faecium	406	22	-	-	-	R	R	4	R	R	16	18	89	89	R	29	98	-	-	89
Staphylococcus aureus	11,579	-	-	64²	64	-	-	72	89	89	66	68	100	100	75	99	100	87	100	83
MSSA	7,933	-	-	1004	100	-	-	78	92	93	70	72	100	100	77	100	100	88	100	86
MRSA	3,758	-	-	-	-	-	-	60	84	80	58	60	100	100	70	98	100	84	99	70
Coagulase-neg. staphylococci (CNS)	3,197	-	-	27²	27	-	-	30	68	75	58	59	100	100	76	98	98	80	94	89
Streptococcus pneumoniae	1,331	-	97³	-	-	98³	98³	52	73	-	94	98	100	-	61	-	100	58	100	99
Streptococcus pyogenes (GAS)	1,988	1004	100	-	-	93	96	65	90	-	89	-	100	-	-	-	100	82	-	-
Streptococcus agalactiae (GBS)	4,215	99	98	-	-	100	98	47	74	-	87	-	99	-	-	96	100	13	-	99
Streptococcus spp. (viridans group)	674	-	62	-	-	88	89	50	76	-	85	-	98	-	-	-	99	60	-	-

²Extrapolated, based on oxacillin. ³Pen G (non-meningitis breakpoints). Pen G (meningitis breakpoints): 43.8 %S. Pen G (oral breakpoints): 43.8 %S). ⁴Extrapolated, based on penicillin.

≥ 80% Susceptible
 70 to 79% Susceptible
 ≤69% Susceptible
 No data/not indicated
 R Intrinsic resistance (R)
 S. pneumoniae
 S. pneumoniae
 Yancomycin-resistant
 E. faecium (VRE): 11%
 Linezolide
 highly effective

UAE National AMR Surveillance System (2018) [8], n=29,191 isolates. Note: preliminary data (53 out of 58 hospitals) S. aureus (%MRSA), United Arab Emirates, 2010-2018

Staph. aureus, Percent of Isolates resistant to Oxacillin (%MRSA) Trend, By Year, 2010-2018

United Arab Emirates n=56,448 Abu Dhabi Emirate (SEHA only) n=30,196

36

S. aureus: Percentage (%) MRSA, UAE, 2018 – by Emirate

Staph. aureus, Percent of Isolates resistant to Oxacillin (%MRSA) United Arab Emirates, 2010-2018, <u>By Emirate</u>

S. aureus: Trend of percentage resistant Isolates (%R) Abu Dhabi Emirate (SEHA), 2010-2018

Trend for percentage of resistance (%R) for *S. aureus*, Abu Dhabi Emirate, 2010 – 2018

Increasing resistance trends:

- All beta-lactam antibiotics (MRSA ↑ ↑)
- Aminoglycosides (GEN ↑)
- Fluoroquinolones (CIP ↑)
- Trimethoprim-sulfamethoxazole (SXT [↑])
- Macrolides (ERY ↑)
- Lincosamides (CLI ↑)

Decreasing resistance trends: • None

38 UAE National AMR Surveillance System, 2018 [8]

S. pneumoniae: Trend of percentage resistant Isolates (%R) Abu Dhabi Emirate, 2010-2018

Increasing resistance trends:

None

Decreasing resistance trends:

• Penicillin (PEN $\downarrow\downarrow$)

Enterococcus spp.: Percentage Resistant Isolates (%Resistant), United Arab Emirates, 2018

E. faecalis and faecium, Percent of Isolates resistant United Arab Emirates, 2018, n=3,546

Note: preliminary data (53 out of 58 hospitals)

Candida spp., Percent of Isolates Susceptible (%S) United Arab Emirates, 2018

	Isolates	Isolates	Triaz	oles	Polyenes	Echino	candins	Other
	(N)	(%)	FLU	VOR	AMB ^a	CAS ^b	MIF	FCT
Candida spp.	1,814	100	76	71	-	81	89	96
Candida albicans	880	49	87	89	-	97	99	98
Candida spp. (non-albicans)	934	51	66	55	-	-	-	94
Candida tropicalis	353	19	96	96	-	100	100	97
Candida parapsilosis	174	10	58	73	-	100	100	100
Candida glabrata	161	9	-	- ^c	-	-	100	100
Candida lusitaniae	56	3	96	-	-	-	-	-
Candida krusei	42	2	R d	100	-	91	100	-
Candida dubliniensis	23	1	91	-	-	-	-	-
Candida haemulonii	10	1	0	-	-	-	-	-
Candida kefyr (pseudotropicalis)	10	1	90	-	-	-	-	-
Other	105	11	-	-	-	-	-	-

≥ 80% Susceptible 70 to 79% Susceptible ≤69% Susceptible No data/not indicated Intrinsic resistance (R)

R

UAE National AMR Surveillance System (2018) [8], n=1,814 Candida spp. isolates. Note: preliminary data (53 out of 58 hospitals)

Reporting of UAE AMR Data – Public Health Surveillance Reports

42

How can UAE Healthcare Facilities participate in National AMR Surveillance?

- By invitation
- By expression of interest

Requests on participating Surveillance Site Laboratories:

- Facility management approval and nomination of focal points
- Availability of AMR data (lab+clinical), in electronic format
- Facility uses a recognized quality management (QM) system
- Laboratory participates in a proficiency testing scheme that covers antimicrobial susceptibility testing

Reasons to participate / expected benefits:

- Supporting the Health Authorities and the UAE Higher Committee for AMR
- Membership in the official UAE AMR surveillance network
- Receiving support and guidance on local AMR surveillance, cumulative antibiograms etc.
- Receiving technical training on WHONET software
- Benchmarking local data with national AMR data
- "Being part of the solution, not of the problem only"
- Prestige / 'feather in the cap'

2. Epidemiology of AMR in the UAE

- 1. UAE National Surveillance System for AMR
- 2. Epidemiology of AMR in the UAE
- 3. How can AMR surveillance data support IPC?
 - Line listings
 - Epi curves
 - Isolate alerts
 - Resistance profiles
 - Detection of clusters and potential HAI outbreaks

	Line	Listing	<mark>y (</mark> Exan	nple: M	RSA	– by	/ Lo	oca	tior	n an	d D	ate	e)		
n fort	ocatio (Ward)	n (Specimen date	C S)rganis 5. aure	m: us			Ox Re	cacill esista	in: ant	22		Ż	Š2
Identification number	Location	Specimen number	Specimen date	Specimen type	Organism	PEN	ERY	NIT	CLI	OXA	GEN	VAN	SXT	AMC	CIP
0448084085	id	_5863219246_	1/27/1995	wd	sau	R	S		S	R	S	?	S	R	S
0844575655	med2	_0160995773_	1/25/1995	sp	sau	R	R		R	R	s	?	S	R	R
0844575655	ор	0160995773_	1/25/1995	ur	sau	R	R	S	s	R	- 1	?	R	R	R
1013605973	ор	9165335901_	1/30/1995	sp	sau	R	S		S	R	S	?	S	R	S
1137685856	ор	_5108867058_	1/13/1995	ur	sau	R	R	S	R	R	R	?	R	R	R
1238843072	ор	4268300617_	1/26/1995	wd	sau	R	S		S	R	S	?	S	R	S
1238843072	ор	4268300617_	1/26/1995	ur	sau	R	R	S	R	R	R	?	R	R	R
1346406050	oncol	_2253236234_	1/6/1995	ur	sau	R	R	S	R	R	R	?	R	R	R
1363680930	other	7947819653_	1/26/1995	th	sau	R	S		S	R	S	?	S	R	1
1412374929	oncol	9806413557_	1/17/1995	wd	sau	R	R		R	R	s	?	S	R	S
1608132686	card	7019045586_	1/9/1995	sp	sau	R	R		R	R	S	?	S	R	R
2109398192	med1	9565564435_	1/4/1995	wd	sau	R	R		S	R	S	?	S	R	1
2232381088	neuro	5196466391_	1/23/1995	bf	sau	R	1		S	R	S	?	S	R	1
2935800012	er	4096729397_	1/30/1995	wd	sau	R	S		S	R	S	?	S	R	S
3394747373	csurg	5308772735_	1/3/1995	wd	sau	R	R		S	R	S	?	S	R	S
3517258939	er	9598120009_	1/15/1995	ur	sau	R	1	1	S	R	S	?	S	R	I
4025261715	icu1	4933799159_	1/19/1995	sp	sau	R	R		R	R	S	?	S	R	S
5068601306	oncol	2749692996_	1/13/1995	sp	sau	R	R		R	R	R	?	R	R	R
6349570905	er	0933629741_	1/2/1995	wd	sau	R	S		s	R	S	?	S	R	S
6986161054	card	_4461109465_	1/16/1995	ur	sau	R	I	S	s	R	S	?	S	R	S
7300786709	med2	_0426656102_	1/28/1995	sp	sau	R	R		R	R	S	?	S	R	R
9131310861	er	_3862228385_	1/29/1995	ur	sau	R	S	S	S	R	S	?	S	R	R
9876786254	med1	_3984609303_	1/3/1995	wd	sau	R	R		R	R	S	?	S	R	R

Epi Curves, obtained from AMR Surveillance data

A cluster of K. pneumoniae

An outbreak?

Isolate Alerts: VRE, MRSA, CRE, ...

_														
	VAN	SXT	FOX	СТХ	PIP	CAZ	IPM	AMC	CXM	MEZ	Alert	Priority	 Organisms 	Isolate alerts
												Medium priority	All organisms	Penicillins and Beta-lactam+Inhibitor = Disc.
	S	?									\checkmark	Medium priority	All organisms	Penicillins = Discordant results
		S		S			S	R!	s	S!	\checkmark	Medium priority	All organisms	Penicillins and Beta-lactam+Inhibitor = Disc.
		S	R	l.	S		S		S!	S	\checkmark	Medium priority	Enterobacteriaceae	Cephems = Discordant results
		S	R	RI	R		S		R	R	\checkmark	Medium priority	Enterobacteriaceae	Possible ESBL-producing Enterobacteriac
		S	R	R!	I		S		R	1	\checkmark	Medium priority	Enterobacteriaceae	Possible ESBL-producing Enterobacteriac
		S	R	RI	R		S		R	R	\checkmark	Medium priority	Enterobacteriaceae	Possible ESBL-producing Enterobacteriac
		S	R	R!	I		S		R	1	\checkmark	Medium priority	Enterobacteriaceae	Possible ESBL-producing Enterobacteriac
		S		Ľ			S	S	S!	S	\checkmark	Medium priority	Enterobacteriaceae	Cephems = Discordant results
		S		S			S	E	S	S!	\checkmark	Medium priority	All organisms	Penicillins and Beta-lactam+Inhibitor = Disc.
		S		l.			S	S	S!	S	\checkmark	Medium priority	Enterobacteriaceae	Cephems = Discordant results
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	l.										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus
	E										\checkmark	Medium priority	Enterococcus sp.	Vancomycin-resistant Enterococcus

Resistance profiles and MDR/XDR/PDR: Allows detection of clusters and tracking of outbreaks

Resistance Profiles (Example: S. aureus)

Profile	Resistance profile	Number of isolates	%lsolates	Number of patients	%Patients
		9	10.5	9	11.8
E	ERY	4	4.7	4	5.3
P	PEN	23	26.7	22	28.9
E R	ERY CIP	4	4.7	4	5.3
P R	PEN CIP	1	1.2	1	1.3
PE	PEN ERY	17	19.8	17	22.4
ΡΟΑ	PEN OXA AMC	5	5.8	5	6.6
PE R	PEN ERY CIP	2	2.3	2	2.6
PE - R	PENERY CIP	1	1.2	1	1.3
P O AR	PEN OXA AMC CIP	2	2.3	2	2.6
PE O A	PEN ERY OXA AMC	2	2.3	2	2.6
PEC R	PEN ERY CLI CIP	1	1.2	1	1.3
PE O AR	PEN ERY OXA AMC CIP	3	3.5	3	3.9
PECO A	PEN ERY CLI OXA AMC	2	2.3	2	2.6
PEC GT R	PEN ERY CLI GEN SXT CIP	1	1.2	1	1.3
PECO AR	PEN ERY CLI OXA AMC CIP	4	4.7	4	5.3
PE OGTAR	PEN ERY OXA GEN SXT AMC CIP	1	1.2	1	1.3
PECOGTAR	PEN ERY CLI OXA GEN SXT AMC CIP	4	4.7	4	5.3

0 -

6Jan 7Jan 8Jan 9Jan 10Jan 11Jan 12Jan 13Jan 14Jan 15Jan 16Jan 17Jan 18Jan 19Jan 20Jan 21Jan 22Jan 23Jan 24Jan 25Jan 26Jan

Utilizing AMR Surveillance Data for Automated Detection of Clusters and potential Outbreaks (HAI and/or community)

2011: MDRO outbreak in an NICU the UAE, caused by multidrug-resistant Klebsiella pneumoniae (ESBL)

2011, over a 5 month period:

- Large outbreak of ESBL *K. pneumoniae* in NICU in UAE with a high mortality rate:
 - 31 infants were colonized
 - 10 invasive infections
 - 5 infants died
- A point source could not be identified
- Overcrowding and understaffing may have been contributing factors

Priority 1: CRITICAL

Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant

Enterobacteriaceae*, carbapenem-resistant, 3rd generation cephalosporin-resistant (ESBL)

SaTScan-Cluster detection with 'Isolate Listing and Summary' Analysis

• Example: *Klebsiella pneumoniae* cluster, 28-30 Jan 1995 (not related to the UAE outbreak on the previous slide)

Organism	Cluster number	Recurrence interval	p-value	Cluster dates	Start date	End date	Number observed	Number expected
Enterococcus sp.								
Escherichia coli								
Haemophilus influenzae								
Klebsiella oxytoca								
Klebsiella pneumoniae ss. pneum	1	47	0,0212	28.01.1995:30.01.1995	28.01.1995	30.01.1995	10	2,34
Moraxella (Branh.) catanhalis								
Morganella morganii ss. morganii								

• Conclusion: There seems to be a rise in the number of patients with *Klebsiella pneumoniae* at the end of the month of January

SaTScan-Cluster detection with 'Isolate Listing and Summary' Analysis Example: *Candida ciferrii* cluster (UAE, 2012)

Organism	Number of isolates	(%)	Number of patients	Cluster number	Recurrence interval	p-value	Cluster dates	Number observed	Number expected
Candida albicans	1602	(45)	1602	5	67	0,015	24.06.2010:30.09.2010	92	53,2
Candida ciferrii	73	(2)	73		1E+17	1E-17	16.06.2012:19.09.2012	33	2,53
Candida dubliniensis	96	(3)	96						
Candida famata	34	(1)	34						
Candida glabrata	271	(8)	271						
Candida guilliermondii	19	(1)	19						
Candida haemulonii	40	(1)	40	4	714	0,0014	21.05.2016:06.08.2016	9	0,77
Candida intermedia	2	(0)	2						
Candida kefyr (pseudotropicalis)	15	(0)	15						

UAE Experience with WHONET SaTScan

WHONET-SaTScan[™] identified a potential outbreak of a MDR E. coli at one hospital in Abu Dhabi in 2011 (non-ESBL/non-CRE)

You found a statistical signal (Cluster)... What comes next?

- 1. Review
 - Biochemical phenotype
 - Resistance phenotype
- 2. Determine:
 - Risk level low /medium / high?
 - Intervention needed: Yes / No?
- 3. Consider possible interventions
 - Submit isolates for molecular typing
 - Notify Nurse Manager
 - Notify Medical Director
 - Notify ASP team
 - Notify Building Service
 - Notify Environmental Health
 - Notify Hospital Epidemiologist
 - Notify ...

Checklist for Responding to WHONET-SatScan Clusters

COOD 1mm 22SED2014 Dr. LinitUA					
coor_spn_255Er2014_ByommA	Order	ed	Comple	ted	
1. Submit Isolates to MOC for molecular typing	X	12/2/2014	×	12/2/2014	Comment
2. Notify Nurse Manager	×	12/2/2014	×	12/2/2014	Comment
3. Notify Medical Director	×	12/2/2014	×	12/2/2014	Comment
4. Notify Attendings Residents	X	12/2/2014	×	12/2/2014	Comment
5. Notify ASP					Comment
6. Notify Building Service					Comment
7. Notify Environmental Health					Comment
8. Notify Infection Control Practitioner					Comment
9. Notify Hospital Epidemiologist					Comment
10. Notify Microbiology					Comment
11. Notify Food Services					Comment
12. Notify Infectious Diseases					Comment
13. Notify Chief Residents Groups					Comment

Shigella Outbreak Detection in Argentina with WHONET SaTScan

Shigellosis in Argentina – Retrospective Study

Six outbreaks as reported to Ministry of Health

Nineteen clusters as suggested by WHONET-SaTScan

Conclusion: Electronic lab-based Disease surveillance incorporating statistical cluster detection methods can enhance Infectious disease outbreak detection and response

Stelling J et al. Automated Use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect (2010), 138:873-883

Shigella Outbreak Detection in Argentina with WHONET SaTScan

Frequency distribution of S. sonnei isolates non-susceptible to SXT by week for the laboratory in La Pampa. Isolates contributing to the SaTScan event are indicated by solid bars

Stelling J et al. Automated Use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect (2010), 138:873-883

Shigellosis in Argentina – Prospective study PFGE confirmation of WHONET-SaTScan signals detected by resistance phenotype

The second second						
		S\$409/10	La Pampa	2010-02-08	Shigelle sonnei	AR/18001.0240
		Sel73HD	La Pampa	2010-02-11	Stigele somei	AR/18001.0211
		SS472/10	La Pampa	2010-02-07	Shigelle sonnei	AR/18001.0242
1.1		SS392/10	La Pampa	2010-01-27	Shigele somei	AR/18001.0237
1000	B B BB BEB BEBBBB	SS397/10	La Pampa	2010-01-28	Stigela somei	AR/18001.0237
	NO NO SECOND	Se400140	La Pampa	2010-01-27	Shigele somei	AR/18001.0237
1000		SS401/10	La Pampa	2010-01-27	Shigella sonnei	AR/16001.0237
1.4		SSADAVID	La Pampa	2010-02-02	Stigelle sonnei	AR/18001.0287
		S\$405/10	La Pempe	2010-01-27	Shigelle sonnei	AR/18001.0287
		S\$408/10	La Pampa	2010-02-02	Shigele somei	AR/16001.0287
100		SS393/10	La Pampa	2010-02-0B	Shigele somei	AR/18001.0288
ч.		SS395/10	La Pampa	2010-01-31	Sigele some	AR/18001.0289
		SS396/10	La Panca	2010-01-28	Sigela some	AR/18001.0239
Ч		SS406/10	La Pampa	2010-01-27	Shigelle sonnei	ARJ18001.0289
			CARD CONTROL MODEL CAR			

Stelling J et al. Automated Use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect (2010), 138:873-883 [15]

в

.

Summary and Conclusions

- AMR is a Global, and Local Threat to Public Health
- UAE National AMR Surveillance
 - 187 surveillance sites, including 59 hospitals and 128 clinics, and 30 microbiology labs, across all 7 Emirates, are providing high-quality AMR surveillance data
 - Overall, antimicrobial resistance (AMR) is increasing in the UAE
- In the UAE, AMR is in particular increasing for:
 - *Staph aureus*: MRSA \uparrow , Macrolides \uparrow , Clindamycin \uparrow , AG \uparrow , CIP \uparrow , SXT \uparrow
 - − *K. pneumoniae*: ESBL \uparrow , Carbapenems \uparrow , Fluoroquinolones \uparrow , SXT \uparrow
 - *P. aeruginosa*: 3^{rd} -gen. Cephalosporins \uparrow , Carbapenems \uparrow , FQs \uparrow
- Routine AMR surveillance data can support infection control by
 - Line listings, epi curves, isolate alerts, resistance profiles, and
 - Automated detection of clusters and potential outbreaks

References and further Reading (1)

- [1] Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. World Health Organization (WHO, 2017). WHO/EMP/IAU/2017.2
- [2] Tacconelli E, Carrara E, Savoldi A et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacterial infections and tuberculosis. Lancet Infectious Dis. 2018;18(3): 318-327
- [3] Kenneth S. Thomson, Univ. of Louisville, KY, USA. Global antibiotic resistant Infections and Laboratory Detection. Presentation at the 1st National RAKMHSU – Saqr Hospital Joint Symposium on Antimicrobial Choice and Resistance Update, 4-6 May 2018, RAKHMSU, RAK, UAE
- [4] World Health Organization. Global Action Plan on Antimicrobial Resistance (2015). <u>https://www.who.int/antimicrobial-resistance/global-action-plan/en/</u>
- [5] World Health Organization. Global Antimicrobial Resistance Surveillance System (GLASS). Manual for Early Implementation. WHO (2015). <u>http://www.who.int/glass/en/</u>
- [6] World Health Organization. Public Health Surveillance. WHO (2018).
- [7] World Health Organization. GLASS. Diagnostic Stewardship. A guide to implementation in antimicrobial resistance surveillance sites. 2016. Available online at:

http://apps.who.int/iris/bitstream/10665/251553/1/WHO-DGO-AMR-2016.3-eng.pdf?ua=1

- [8] United Arab Emirates National Surveillance System for Antimicrobial Resistance. Not published.
- [9] WHONET Software for Surveillance of AMR and Microbial Populations. WHO Collaborating Center for AMR Surveillance. Boston, USA. <u>www.whonet.org</u>
- [10] Tamma PD et al. Infect Control Hosp Epidemiol (2012) 33(6): 631-4.
- Communicable Disease Bulletin. Department of Health, Abu Dhabi (DoH). www.doh.gov.ae
- [10] Tamma PD et al. An outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. Infect Control Hosp Epidemiol (2012) 33(6): 631-4 [26]
- [11] WHO-SEARO. Health Topics: Disease Outbreaks (2019). <u>http://www.searo.who.int/topics/disease_outbreaks/en/</u>

References and further reading (2) – Outbreak detection

- 12. WHONET Tutorial: Cluster Detection with SaTScan[™], WHO Collaborating Center for Surveillance of AMR. Boston, 2006. www.whonet.org
- 13. Kulldorf M. and Information Management Services, Inc. SaTScan[™] v.7.0: Software for the spatial and time-scan statistics. http://www.satscan.org, 2006
- 14. Huang SS, Yokoe DS, Stelling J et. al. Automated Detection of Infectious Disease Outbreaks in Hospitals: A Retrospective Cohort Study. PLoS Medicine (2010); vol. 7, issue 2
- 15. Stelling J et al. Automated Use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect (2010), 138:873-883
- 16. Vlek ALM, Cooper BS, Kypraios T et al. Clustering of Antimicrobial Resistance Outbreaks across bacterial Species in the Intensive Care Unit. Clin Infect Dis. 2013 Jul;57(1):65-76
- 17. Lee KH, Thomsen J, Stelling J. Detection of Healthcare-Associated Outbreaks of Multidrug-resistant Organisms using Antimicrobial Resistance Phenotypes. Poster presentation
- 18. Natale A, Stelling J, Meledandri M et al. Use of WHONET-SaTScan system for simulated real-time detection of antimicrobial resistance clusters in a hospital in Italy, 2012 to 2014. Euro Surveill. 2017 Mar 16;22(11)
- 19. Lefebvre A, Bertrand X, Vanhems P, et al. Detection of Temporal Clusters of Healthcare-Associated Infections or Colonizations with Pseudomonas aeruginosa in Two Hospitals: Comparison of SaTScan and WHONET Software Packages. PLoS One. 2015 Oct 8;10(10):e0139920
- 20. Stachel A, Pinto G, Stelling J et al. Implementation and evaluation of an automated surveillance system to detect hospital outbreaks. Am J Infect Control. 2017 Aug 22. pii: S0196-6553(17)30849-0
- 21. Park R, O'Brien TF, Huang SS et al. Statistical detection of geographic clusters of resistant Escherichia coli in a regional network with WHONET and SaTScan. Expert Rev Anti Infect Ther. 2016 Nov;14(11):1097-1107. Epub 2016 Sep 6.
- 22. Viñas MR, Tuduri E, Galar A et al. Laboratory-based prospective surveillance for community outbreaks of Shigella spp. in Argentina. PLoS Negl Trop Dis. 2013 Dec 12;7(12):e2521

Thanks and Credits to >100 AMR Surveillance Colleagues:

Microbiologists/ Pathologists

Dr. Adnan Alatoom **Prof. Agnes Sonnevend** Dr. Anju Nabi Dr. Deeba Jafri Dr. Duckjin Hong Dr. Farrukh Amin Sheikh Dr. Fouzia Jabeen Prof. Godfred Menezes Prof. Hala Fouad Dr. Ibrahim Alhashmi Dr. Jhansi Suresh Dr. Kavita Diddi Dr. Linah Al Zakar Dr. Manal Al Fattah **Dr. Mariam Aly Elsayed** Dr. Martin Pitout Dr. Mubarak Alfaresi Dr. Neetu Shrivastava Dr. Nesrin Helmy Prof. Palat Menon Dr. Payal Modi Dr. Ratna Kurahatti Dr. Rhenu Bhatia Dr. Riyaz Husain Dr. Nastartan Rezaee Dr. Savitha Mudalagiriyappa **Dr. Shweeta Uppal** Dr. Somansu Basu Dr. Stefan Weber Dr. Tarek Ghneim Al Hariri Prof. Tibor Pal Dr. Waheed Tarig

Dr. Zulfa Al Deesi

Laboratory Technologists

Ajeej Jose Aliasgher Haidermota Al Tayeb Babiker Al Tayeb Anam Waheed Anwar Gampadadda Asha Kuruvilla Aslam Bayaan Khizar Fatima Rashid Alburaiki Karen Lawlor **Kilchae Hwang** Maryam Abdullah AlDanhani Moawia El Tahir Suliman Mohammed Sartawi Meera Sahibu Jainamboo **Neenet Joseph Osman Jaffar** Prajin KP Rahima Khan Al Baloushi Roa Ahmed Muhammad Sameiah Mohammad Salih Samer Al Jack Seyed Reza Karimi Shaikha Awad Al Kaabi Shafna Abdul Kader Stephen Zachariah **Sura Khamees Majed** Suzan Elzain Ahmed Zahara Khalid Alkhedir

Zahid Hussain Akram

. . .

Focal Points at Hospitals & Clinics

Dr. Ahmed Anaizi Dr. Aiit Kumar Dr. Amer Ashou Dr. Bejov Peethambaran **Dr. Christos Dimopoulos** Dr. Dirar Abdallah Dr. laiaz Ahmed Dr. Khusro Kamal Zia Dr. Leili Chamani Tabriz Dr. Mohammad AlAhmad Mr. Monet Abraham Dr. Nehat Al Shirawi Dr. Prashant Nasa Roa Ahmed Muhammad Dr. Samina Nafees Ahmad Dr. Rola Al Fakh Dr. Santosh Sharma Dr. Sung Soo Park Mohammad Anwar Haidari

IT

Abdul Nazar Syed Afrooz Rahmati Hasna Saeed Al Kitbi Kapil Dayal Khaleelur Manzil Nidhi Dhupar Praneeth Suvarna Sujith Varghese Vibhor Mathur

UAE Subcommittee for AMR Surveillance

Dr. Manal al Fattah Dr. Najiba Abdulrazzag Prof. Hala Fouad (Co-Chair) Dr. Bashir Aden Dr. Hashem Tarifi Yousuf Naqvi Dr. Anju Nabi Dr. Mubarak Alfaresi Dr. Duckiin Hong Dr. Fouzia Jabeen Prof. Tibor Pal **Prof. Agnes Sonnevend** Prof. Palat Menon Dr. Martin Pitout Dr. Stefan Weber Dr. Adnan Alatoom Dr. Somansu Basu

WHONET

Dr. John Stelling Adam Clark

WHO & EMRO

Dr. Sergey Eremin Martina Escher Barbara Tornimbene Dr. Bassem Zayed

Comments/Questions:

Dr. med. Jens Thomsen MD MPH

jthomsen@doh.gov.ae

Tel.: +971 (2) 504 8847