## James Waterson. RN, M.Med.ED. Infusion Nursing Society. **ETTubes and VAP**





Learning Objectives.

At the end of this session the participant will be able to:

- Define of VAP, broadly and as a focused diagnosis.
- Describe the pathophysiology, diagnosis, mortality and cost to healthcare organizations of VAP.
- Understand the central tents of VAP Prevention.
- Describe the central issue of audit tools for Vap Prevention.
- Understand the emerging role of technology in VAP prevention.

# VAP Defined

Patients mechanically ventilated for greater than 48 hours

Exhibit at least 3 or 5 following symptoms:

- Fever.
- Leukocytosis.
- Change in sputum (color and/or amount).
- Radiographic evidence of new infiltrates.
- Worsening oxygen requirements.





CDC 2003

## Focussed Definition

Inflammation of lung parenchyma > 48 hours post intubation, due to organisms not present or incubating at the time mechanical ventilation was commenced.

- Early onset within first 4 days: usually antibiotic sensitive
- Late onset > 5 days: commonly multi-drug resistant pathogens.



## Pathophysiology + Diagnosis

- Aspiration of pathogenic organisms from the oropharynx.
- Normal flora replaced by pathogenic organisms

(S. aureus, P. aeruginosa, H. influenzae, and Enterobacteriaceae.

- Mixed infection in 50%
- 'Endotracheal tube associated pneumonia': But plaque, NG, hands...
- Clinical Pulmonary Infection Score (CPIS)
- Temp, Leucocytosis, PaO2/FiO2, CXR, Tracheal secretions Culture
- BAL cultures.

#### No gold standard

• Even autopsy does not always provide certainty: missed areas of pneumonia, negative micro despite inflammation, pathologists disagree.

A Randomized Trial of Diagnostic Techniques for Ventilator-Associated Pneumonia. The Canadian Critical Care Trials Group. N Engl J Med 2006; 355:2619-2630, 2006



## Mortality and Cost.

- The leading cause of death among HAIs, exceeding deaths due to central line infections, severe sepsis, and respiratory tract infections in non-intubated patients.
- Rates ranges from 15% to 70% depending on the patient population.
- Approximately 60% of deaths among patients with hospital acquired pneumonia.
- Increases LOS in ICU by an average of 4 to 9 days.
- Costs to up to \$40,000 per patient.







## Prognosis



Fig. 1 Mortality rate by pneumonia category. Adapted from *Chest.* 2005;128:3854-3862.

## VAP Prevention: Fairly Basic...



#### 'Vent Bundle'

- Suctioning
- Head of bed > 30°
- Oral Care
- Sedation holiday
- SSD-ETT



...

## The Bundle is Straightforward: Applying, Enforcing and Auditing It, Is Not.

- Routine practice change tubing only if they become soiled with secretions or damaged: 100%
- Compliance with hand hygiene: 87.5%
- Sedation vacation and assessment of readiness of extubation. 66% [Excl. HFO, high ICP, difficult to ventilate]
- Elevation of head of bed 30-45 degrees: 100% [Excl. Spine injury]
- Oral hygiene with chlorhexidine 100%: [Excl. Oro-pharyngeal trauma]
- Subglottic suction: 0%: [Not available... HEOR?]

#### 天上有法天下有道.... Fatto la legge, trovato l'inganno...

Al Harthy et Al. VAP bundle compliance in ICU. The Online Journal of Clinical Audits. 2014; Vol 6(2). [KSA Paper]

## Tools of the Trade: We have progressed...



Early ETT: high-pressure and lowvolume cuffs, which increased the patient's risk of tracheal mucosal ischemia and necrosis. The design of these tubes allowed secretions to pool below the vocal cords and above the cuff...



#### Endotracheal tube cuff





High volume Low volume Low pressure cuff High pressure

## SSD-ETTs





SSD-ETTs in patients mechanically ventilated for more than 72 hours

## SSD-ETT Specific VAP Prevention Guidelines



#### **Centers for Disease Control and Prevention**

Recommends an ETT dorsal lumen above the endotracheal cuff to allow drainage by continuous or frequent intermittent suctioning of tracheal secretion that accumulates in patient's subglottic area

## Typo5 ATS

#### American Thoracic Society

Recommends the use of specifically designed ETT with dorsal lumen for the continuous aspiration of subglottic secretion

Tablan OC, Anderson LJ, Besser R, et al. Guidelines for preventing healthcare-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep. 2004;53:1-36. PMID: 15048056.

American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcareassociated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388-416. PMID: 15699079.

## So, We have the Tools But are They Applied?: Audit is not a passive process.

- Physician Rounding Tool to address VAP bundles.
- Unit champions.
- Formalize oral care process using chlorhexidine
- Train nursing auxiliaries in oral care.
- Oral care a shared responsibility by RNs, RTs and NAs increasing oral care from 4 times per day to 10 times per day.
- Computerized reminder alerts for the care team.
- Isolation supplies –gowns, gloves, masks at entrance to every patient room
- Standardized sedation protocol
- Sedation holiday practices
- Elevation of bed
- Daily sedation break + weaning assessment: 2.4 vent days, 3.5 ICU days saved

Drakulovic et Al. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomized trial. Lancet. 354(9193):1851-8, 1999 Nov 27.

Dodek P. et al., Evidence-Based Clinical Practice Guideline for the Prevention of Ventilator-Associated Pneumonia, Ann Intern Med. 2004;141:305-313.

## Sepsis Maggie... VAP Jimmy?



## Audit: A fairly painful process... Can Tech Help?

| FV VAP Bundle<br>(*SICS Bundle) |        |               |            |      | VAP: % All Bundle Compliance |  |  |  |  |  |  |
|---------------------------------|--------|---------------|------------|------|------------------------------|--|--|--|--|--|--|
|                                 | Daily? | Per<br>Shift? | 4<br>Hrly? | AI?? | 100 - 96 100                 |  |  |  |  |  |  |
| Patient at 30°-<br>45°          |        |               |            |      | 90 78                        |  |  |  |  |  |  |
| Subglottic<br>ETDT              |        |               |            |      |                              |  |  |  |  |  |  |
| Oral chlorhex                   |        |               |            |      | 60<br>50 41                  |  |  |  |  |  |  |
| Tubing/HMEF                     |        |               |            |      |                              |  |  |  |  |  |  |
| Daily weaning plan              |        |               |            |      |                              |  |  |  |  |  |  |
| Sedation stop                   |        |               |            |      | March April May June July    |  |  |  |  |  |  |
| All elements                    |        |               |            |      | Month 08                     |  |  |  |  |  |  |

Stanford Partnership in AI-Assisted Care

## Intelligent Hand Hygiene Support

## Big Brother is Watching You...



Maximum limits on pumps make sense... prevent overdose errors and control behavior in terms of over-sedation and extra boluses...



#### But what about the soft minimum? Any Value?



UTR

UOL LIME

So Soft Minimum limits on smart pumps have value... if reported in real time....

## Real time monitoring of compliance. Audit logging. Viewable from home...







# Overview of every infusion... centrally and web based.

| ١    | 1 <b>Smith</b> , John<br>120 min to next EOI | <b>#</b> †*     | 2 Smith, .<br>120 min to nex | John<br>t EOI | ₩ŧ★            | 3 Smith, Joh<br>120 min to next EC | nn 📲  | P#*    | 4 Sm<br>120 mln | <b>ith</b> , John<br>to next EOI | <b>#</b> †* |
|------|----------------------------------------------|-----------------|------------------------------|---------------|----------------|------------------------------------|-------|--------|-----------------|----------------------------------|-------------|
|      | 💧 DOPAmine                                   | 8 <i>m1/</i> h  | 💧 aceta Z                    | DLAMIDE       | Birth          | 💧 DOPAmine                         | in -  | 8m/dt  | () AL           | ARIS CC                          |             |
| 57   | A Near end of infusion                       | Sector          |                              | on            |                | 💧 DOBUtamii                        |       | 15mi/b | A Ne            |                                  | Swith       |
|      | 💧 DOBUtamine                                 | 15min           | 💧 DOBUta                     |               | 15mi/h         | 🔥 Near end o                       |       | 8m/t   | <b>A</b> DX     | OBUtamine                        | 15wirt      |
| 曲    | 🛆 Occlusion                                  |                 |                              | СС            |                | 💧 aceta ZOL/                       | MIDE  | 3m/dr  | 40              | clusion                          |             |
|      | 💧 DOBUtamine                                 | 15 <i>mb</i> ts | 💧 DOBUta                     | mine          | 15mi/b         | 💧 DOBUtamii                        | ne    | 15mith | <b>6</b> DX     | OBUtamine                        | 15min       |
|      | () ALARIS CC                                 |                 | 🛕 Near en                    | d of infusion | 8mi/h          |                                    |       |        | <b>b</b> DX     | OPAmine                          | 8mith       |
|      | 💧 aceta ZOLAMIDE                             | 3mich           | 💧 DOPAm                      | ine           | 8mi/h          |                                    |       |        | 💧 ac            | eta ZOLAMIDE                     | 3mith       |
|      |                                              |                 |                              |               |                |                                    |       |        |                 |                                  |             |
|      | 5 <b>Smith</b> , John<br>120 min to next EOI | <b>#</b> †*     | 6 Smith, .<br>120 min to nex | John<br>teol  | <b>#</b> †*    | 7 Smith, Joh<br>120 min to next EC | nn 🖣  | P#+    | 8 Em            | pty                              |             |
|      | () ALARIS CC                                 |                 | 💧 DOPAm                      |               | 8mi/h          | 💧 aceta ZOLA                       | MIDE  | 3mi/t  |                 |                                  |             |
|      | A Near end of infusion                       | 8mi/h           | 💧 DOBUla                     |               | 15min          |                                    |       |        |                 |                                  |             |
|      | 💧 DOBUtamine                                 | 15with          | 🛕 Near en                    |               | 8mi/h          | 💧 DOBUtamii                        |       | 15m//b |                 |                                  |             |
|      |                                              |                 | 💧 aceta Z                    | OLAMIDE       | Birith         |                                    |       |        |                 |                                  |             |
|      | ODBUtamine 15wuk                             |                 | 💧 DOBUta                     | imine         | 15midt         | DOBUtamine 15mg                    |       |        |                 |                                  |             |
|      | DOPAmine 8min U AL                           |                 |                              | CC            |                | A Near end of infusion 8mm         |       |        |                 |                                  |             |
|      | 💧 aceta ZOLAMIDE                             | 3ml/h           |                              | on            |                | 💧 DOPAmine                         |       | 8m//F  |                 |                                  |             |
|      |                                              |                 |                              |               |                |                                    |       |        |                 |                                  |             |
| TRAL |                                              | DC              | DSE                          | RATE          | PRESSURE       | VOLUME                             | TIME  | ROT    | ATE             |                                  |             |
| Gen  | Patient<br>SMITH, JOHN                       | ADM             | MENU                         | ALARM (DEM    | MO MODE) BED-3 |                                    | 23/07 | HELP   |                 |                                  |             |





Evidence for Core Bundle: 'Every patient, every time'. 'All necessary and all sufficient' 1A...

Can Do...

S/C Enoxaparin and Ranitidine. [Changing Gastric Ph is controversial]

Enteral feeding encouraged – if tolerated ranitidine cessation considered.

- NIV avoiding intubation
- Kinetic beds no evidence
- HME vs Heated Water Humidification equally effective
- Glycemic protocol to keep glucose between 80 and 150 mg/dl

Smulders K, et al. A randomized clinical trial of intermittent subglottic secretion drainage in patients receiving mechanical ventilation. Chest 2002; 121: 858-862. CAT.

Kollef M, et al. A randomised clinical trial of continuous aspiration of subglottic secretions in cardiac surgery patients. Chest 1999; 116: 1339-1346. CAT.

Valles J, et al. Continuous aspiration of subglottic secretions in preventing ventilator-associated pneumonia. Ann Intern Med 1995; 122: 179-186. CAT.

Mahul P, et al. Prevention of nosocomial pneumonia in intubated patients: respective role of mechanical subglottic secretions drainage and stress ulcer prophylaxis. Intensive Care Medicine 1992; 18: 20-25. CAT.

# Alternate Thoughts: TCI and Dexmedetomidine as an option for optimum sedation: Easy to wake, easy to wean.





Hannivoort et Al. Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers. Anesthesiology 2015;123(2):357-367. doi: 10.1097/ALN.0000000000740.

## FMEA... Review of Risk- Transport.

- Aspiration during transport
- Cuff leaks
- Unplanned extubations requiring reintubation

| Failure Mode and Effects Analysis                                               |                           |           |           |       |                                                                                                                                                             |           |                    |            |       |
|---------------------------------------------------------------------------------|---------------------------|-----------|-----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------|------------|-------|
| Data Source: Review of VAPs in MICU that occur in spite of high complaince rate |                           |           |           |       | tilator Bundles                                                                                                                                             | Completed | : March 2005       |            |       |
|                                                                                 |                           |           |           |       |                                                                                                                                                             |           |                    |            |       |
| RCAs of VAP showed three major causes of rer                                    | naining VA                | Ps:       |           |       |                                                                                                                                                             | Team:     | Bela Patel         | MD         |       |
| <ol> <li>Aspiration during transport</li> </ol>                                 |                           |           |           |       |                                                                                                                                                             |           | Tammy Ca           | mpos, RN,  | MSN   |
| 2. Endotrachial cuff leaks                                                      |                           |           |           |       |                                                                                                                                                             |           | Michael Hewitt, RT |            |       |
| 3. Unplanned extubations requiring reintutation                                 |                           |           |           |       |                                                                                                                                                             |           | Ruthie Sis         | ka, RN     |       |
|                                                                                 |                           |           |           |       |                                                                                                                                                             |           |                    |            |       |
|                                                                                 | Occurance                 | Detection | Severity  |       |                                                                                                                                                             | Occurance | Detection          | Severity   |       |
|                                                                                 |                           |           | Potential |       |                                                                                                                                                             |           |                    | Potential  |       |
|                                                                                 | Likely to                 | Likely to | to cause  |       |                                                                                                                                                             | Likely to | Likely to          | to cause   |       |
| Failure Mode for MICU VAP                                                       | Occur                     | detect    | VAP       | Total | Action taken                                                                                                                                                | Occur     | detect             | VAP        | Total |
| Aspiration during transport                                                     | 8                         | 5         | 5         | 200   | All high risk patients transported with HOB elevated;<br>Feeding stopped two (2) hours prior to transport                                                   | 2         | 5                  | 5          | 50    |
| Endotrachial cuff leak                                                          | 7                         | 5         | 8         | 280   | Changed how cuff pressures are measured and<br>increased pressure                                                                                           | 2         | 2                  | 8          | 32    |
| Umplanned extubations requiring reintubation                                    | 6                         | 8         | 5         | 240   | Risk Factors: PRN nurses working in unit & Shift<br>ChangePRN nurses are closely supervised by charge<br>nurse. Surveillance increased during shift change. | 2         | 8                  | 5          | 80    |
|                                                                                 | Total Risk Priority Score |           |           | 720   |                                                                                                                                                             | "After    | " Risk Prio        | rity Score | 162   |
|                                                                                 |                           |           |           |       |                                                                                                                                                             |           |                    |            |       |

Ventilation Modes and Strategies: More Lung Protective but also avoid intubation, avoid long term ventilation if possible.

- Adaptive Ventilation Mode
- CPAP
- Mask BiPap
- Automated Vent Summary: Assists with the complexity of ventilator related weaning information







## AI better than human with some complex decisions...

40-50% of the duration of mechanical ventilation is spent weaning.

Failure of extubation with reintubation within 48 hours is associated with high mortality.

Efficiency of weaning predictors is increased when predictors are summarized.

Esteban A. Modes of Mechanical Ventilation and Weaning. A National Survey of Spanish Hospitals. CHEST J. 1994;106(4):1188. doi:10.1378/chest.106.4.1188

Epstein SK, Nevins ML, Chung J. Effect of unplanned extubation on outcome of mechanical ventilation. Am. J. Respir. Crit. Care Med. 2000

Coplin WM, Pierson DJ, Cooley KD, Newell DW, Rubenfeld GD. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am. J. Respir. Crit. Care Med. 2000



## VAP – key points.

- The tools have existed for a very long time.
- Education.
- Audit... Watchdog and Champions.
- Process measurement / management.
- MDT dependant



- Resources without the above, bundles are futile.
- Oral Care with Chlorhexidine: Withdrawn in ICS and NICE Bundles except for cardiac patients

Hellyer et Al. The Intensive Care Society recommended bundle of interventions for the prevention of ventilatorassociated pneumonia. Journal of the Intensive Care Society. 2016, Vol. 17(3) 238–243.



Emerging technologies and novel technologies may have value....

### References

Al Harthy et Al. VAP bundle compliance in ICU. The Online Journal of Clinical Audits. 2014; Vol 6(2). [KSA Paper]

American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilatorassociated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388-416. PMID: 15699079.

Coplin WM, Pierson DJ, Cooley KD, Newell DW, Rubenfeld GD. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am. J. Respir. Crit. Care Med. 2000

Drakulovic et Al. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomized trial. Lancet. 354(9193):1851-8, 1999 Nov 27.

Dodek P. et al., Evidence-Based Clinical Practice Guideline for the Prevention of Ventilator-Associated Pneumonia, Ann Intern Med. 2004;141:305-313.

Epstein SK, Nevins ML, Chung J. Effect of unplanned extubation on outcome of mechanical ventilation. Am. J. Respir. Crit. Care Med. 2000

Esteban A. Modes of Mechanical Ventilation and Weaning. A National Survey of Spanish Hospitals. CHEST J. 1994;106(4):1188. doi:10.1378/chest.106.4.1188

Hannivoort et Al. Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers. Anesthesiology 2015;123(2):357-367. doi: 10.1097/ALN.000000000000740.

Hellyer et Al. The Intensive Care Society recommended bundle of interventions for the prevention of ventilator-associated pneumonia. Journal of the Intensive Care Society. 2016, Vol. 17(3) 238–243.

Kollef M, et al. A randomised clinical trial of continuous aspiration of subglottic secretions in cardiac surgery patients. Chest 1999; 116: 1339-1346. CAT.

Mahul P, et al. Prevention of nosocomial pneumonia in intubated patients: respective role of mechanical subglottic secretions drainage and stress ulcer prophylaxis. Intensive Care Medicine 1992; 18: 20-25. CAT.

Smulders K, et al. A randomized clinical trial of intermittent subglottic secretion drainage in patients receiving mechanical ventilation. Chest 2002; 121: 858-862. CAT.

Tablan OC, Anderson LJ, Besser R, et al. Guidelines for preventing healthcare-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep. 2004;53:1-36. PMID: 15048056.

The Canadian Critical Care Trials Group. A Randomized Trial of Diagnostic Techniques for Ventilator-Associated Pneumonia. N Engl J Med 2006; 355:2619-2630, 2006

Valles J, et al. Continuous aspiration of subglottic secretions in preventing ventilator-associated pneumonia. Ann Intern Med 1995; 122: 179-186. CAT.